Archivio per la categoria ‘Autocostruzione’

Dopo diversi anni di glorioso servizio alcuni mesi fa è giunta l’ora di “rottamare” le vecchie casse, destinando alla discarica la parte in legno, che dopo 20 anni iniziava a evidenziare problemi di vecchiaia, soprattutto quelle in truciolare per i bassi, che se non fosse stata per una struttura interna simil-matrix nell’ultimo periodo avrebbe avuto sicuramente problemi; per quanto riguarda gli altoparlanti, il CIARE HW380 è stato “ceduto” al miglior offerente mentre sono stati messi a riposo (momentaneamente) un vecchio PW322, che riporta ancora la scritta  M320-75… ed una tromba a direttività costante (T4439) con un profilo che si appoggia alla perfezione su un woofer da 12”.

(altro…)

Italiano 

Sometime ago, in this article (sorry still not in English), i described how nowadays the use of class G (or class H modulated) amplifiers for Hi-Fi installations could be a valid solution, also considering performances not only efficiency in terms of less current drawn from the mains and less dissipated power and finally heat. Modern components and some technical tricks allow to have a very smooth transition between rails, so that it is almost invisible at the scope as well; I would like to remember that, based on the IEC specifications for musical signals, above 5Khz we have only 4,5% of the total power

distribuzione potenza

It will be very difficult for a class G amplifier working on the whole audio band the use of the higher supply voltage, so the possible problem of visible “glitches” on the waveforms does not arise.

Given this, looking at Douglas Self publications and browsing among some PRO amplifier schemas, I designed a small class G amplifier, which I thought to use in my HT setup, undecided between 5 mono units and a 5 channel one, even if I was not able to build them yet.

Here is the schema, like i put in LTSpice for simulation

It is a classic “mirror” topology with double differential input and double voltage amplifier stage (VAS), in an Emitter Follower configuration; also the output stage is an Emiter-Follower. So basically we have a classical and very well tested schema, capable to give very good distortion figures. The two supply voltages are 22/44 but we can use up to 25/50 without shatter the 2Ohm behavior.

The input stage uses the 2N5401/2N5550 pair, the same for the first VAS transistor, but we can use also the MPSA06/MPSA56, or others with the same pin layout. I used the BC547B/BC557B in the current mirrors, just keep in mind that changing the transistor here will change the associated VBE and finally the current that will flow at idle in the VAS: in that case some resistors will need to be changed to revert to the current schema values.

The input stage is biased at around 2.4mA per side and the VAS at around 7mA; each output stage transistor is biased at 30mA (but obviously You can change it); due to the high working current of the input stage it is highly degenerated with the 4 resistors marked {Rdeg}, which I set to 220Ohm. The remaining of the compensation is given by the to 68pF capacitors around the VAS.

Let’s take now a look at the output stage: the part working with the lower supply is a standard Emitter Follower with the MJE15034/MJE15035 as driver and the recent NJW1302/NJW3281 pair, basically another version of the famous MJL1302A/MJL3281A, but in a TO218 (TO3P) package instead of the TO264; it is possible to use whichever model in that case. On the PCB I’m working on I’m using a TO218 case, but we can use also the TO247 one which has almost about the same dimensions: the MJW1302/MJW3281 use that case (I have several of them).

The part of the output working with the higher supply is built with the same approach (E-F), but is configured to receive the required voltage swing to be activated. Unlike the old article, where the outer stage point of activation is given by a Zener in the bias chain (between the VAS and the VBE multiplier), in this schema I’m using the “bootstrapping” technique.

Basically the output voltage is connected to the higher supply rail by means of a zener biased by a resistor connected to that rail; the signal between the zener and the resistor is sent, through a diode, to the driver of the outer section, allowing it to start conduct before the output meet the lower supply. At this point the diode in series with the lower supply shut off and only the higher supply rail is modulated to the load. this stage is marked on the schema with “POS STEP” (“NEG STEP”  for the negative side) together with a filter built on a 8.2KOhm resistor and two 150pF capacitors, which allow for an additional smooth transition with the rails at higher frequency: this filter is reported also on Patent #5387876.

The bootstrapping approach, instead of the one with the zener in the bias chain, allows to have a higher output voltage (and thus more power) because no additional V are lost before the output stage.

This is the 20Khz sin wave simulated with a 4Ohm load near the maximum power

As You can see no “glitches” are present; on the second wave You can note a sort of bulge on the red data, which is a little anticipated voltage switch with smoother transition; on the first wave it is not visible but I’m pretty sure this is a limit of the simulation software. Going down with the frequency this bulge become less visible till vanish at around  10KHz, where the switch of the diode is not able to produce artifacts on the output signal; furthermore the better is the Shottky diode  used the better is the switching behavior.

On the box over the waves You can see how the switched (sorry modulated 🙂 ) supply voltage is around 2.3V over the output signal; we could try to further “mask” the switch off behavior of the diode by increasing this difference. In the schema I used the 5,6V 3W 1N5919B zener, so due to its power rating we could increase its bias, or replace with for example the BZX84C6V2L and reducing the current in order to not go over its specification; using a 10KOhm resistor with the BZX the supply voltage settle to around 4V over the output. Do not set this difference too high because You will lower the overall efficiency. i the PRO world for example, where the rails are at least 45/90, tipical values are from 9V to 12V.

In the following two images we can see the comparison, in term of dissipated power and efficiency, between this class G amplifier and the same configured as a class B one, using only the higher supply voltage and continuing to use the whole 8 output power transistor. I set the total bias of the two schemas to be the same, so giving 60mA each output to the class G and 30mA each to the class B. the graphs were simulated using a 1Khz sin wave over an 8Ohm load.

Disspated power

Efficiency

A remarkable difference, particularly at levels of average usage.

Let’s now see the differences with a real musical program: here LTSpice helps with its capability to load wave files as input signal; for this test I used 16s of the refrain of Lady Gaga “Poker Face” (where she starts with “Can’t read my, Can’t read my…”)

Class G

pout: AVG((v(out))*i(rout))=21.3676 FROM 0 TO 16
pdiss: AVG(((v(vpos)-v(vtrout))*ic(q24)*4)+((v(vl+)-v(vtrin))*ic(q19)*4))=18.5003 FROM 0 TO 16

Class B

pout: AVG((v(out))*i(rout))=21.3662 FROM 0 TO 16
pdiss: AVG((v(vpos)-v(vtrin))*ic(q24)*8)=36.2656 FROM 0 TO 16

We can see how the dissipated power of the class G is almost half that of class B; the difference is even higher for programs with higher dynamic excursion (like i verified with “Time” contained in the GOLD CD version of “Dark Side Of The Moon”).

A stereo module built on this circuit can be put inside a case like this http://www.modushop.biz/ecommerce/cat066.php?n=1 using an heatsink 30cm long, 4cm high and with fins of 3cm.

The main issue here is the power transformer, which should be difficult to find in order to be fitted in a 40mm case, due also to the fact the a good level of VA is required to correctly drive loads below 8Ohm.

I asked Canterbury Windings a couple of 160VA transformers with GOSS band and electrostatic screen between the primary ad the secondaries, with a total height of 38mm. This transformer has also been inserted in the available products and its model is

Type: TM155A

Continuous power rating: 160VA
Primary: 230V @ 50Hz
Electrostatic screen
Secondaries: 4 x 16.5V @ 2.42A rms
GOSS band
Dimensions: approx 136x38mm
Mounting: M8 x 30mm bush in a potted centre
Extended lead time on this item

 

At that time Terry told me that without the electrostatic screen some further VAs could be gained for the same dimension.

In the meanwhile I’m working to a PCB for a stereo module, with power supply included, separate bridge rectifiers and supply capacitor for each channel.

Un po’ di tempo fa, in questo articolo, ho descritto come ormai l’impiego dei finali in classe G (o H modulata) in campo Hi-Fi possa considerarsi una soluzione adeguata anche considerando le performance, oltre che dal punto di vista dell’efficienza, sia come risparmio di corrente assorbita che come risparmio nella potenza dissipata e quindi calore generato. I moderni componenti disponibili e alcuni accorgimenti tecnici rendono lo switch tra una tensione e l’altra praticamente inavvertibile sulla forma d’onda anche alle frequenze più elevate; mi preme ricordare che in base alle specifiche IEC, per quanto riguarda un programma musicale, oltre i 5Khz rimane circa il 4,5% della potenza

distribuzione potenza

quindi risulterà molto difficile per un amplificatore in classe G che opera su tutta la banda utilizzare la tensione di alimentazione più alta, quindi l’eventuale problema di “glitches” presenti sulla forma d’onda non si pone.

Detto questo sfruttando le publicazioni di Douglas Self e curiosando tra alcuni schemi di finali professionale reperibili in rete, ho disegnato un piccolo finale in classe G, che avevo inizialmente previsto di utilizzare nel mio impianto HT, indeciso tra 5 componenti mono oppure un modulo a 5 canali, ma che non sono ancora riuscito a realizzare.

Di seguito lo schema, così come è stato inserito in LTSpice per la simulazione

image

Si tratta di una classica configurazione “mirror” con doppio differenziale d’ingresso e doppio amplificatore in tensione (VAS) in configurazione emitter follower; anche lo stadio d’uscita è un tipico emitter-follower. Quindi di base abbiamo di fronte uno schema abbastanza standard e collaudato, ma che è in grado di fornire ottime performance dal punto di vista della distorsione. Le due tensioni di alimentazione sono 22/44 ma ci si può tranquillamente spingere fino a 25/50 senza pregiudicare il funzionamento su 2Ohm, se  per caso si pensa di usare questo carico.

il differenziale di ingresso usa la coppia 2N5401/2N5550, cosi come il primo transistor del VAS, ma si possono usare indifferentemente anche gli MPS06/MPSA56 o altri dalla piedinatura identica; per lo specchio di corrente (current mirror) ho usato i BC547B/BC557B, tenete solo presente che cambiando transistor cambia la tensione VBE e quindi di conseguenza la corrente che scorrerà nel VAS, per cui sarà necessario modificare il valori di alcune resistenze. Ricordatevi che i transistor BC hanno la piedinatura invertita rispetto agli MPSA e 2N…

Per quanto riguarda la corrente di lavoro lo stadio di ingresso è polarizzato a circa 2.4mA per ramo mentre il VAS a circa 7mA per ramo; i finali invece operano con una corrente di riposo di circa 30mA (nulla vieta di cambiarla). Data l’elevata corrente di lavoro dello stadio di ingresso lo stesso è fortemente degenerato dalle 4 resistenze chiamate {Rdeg} il cui valore è 220Ohm, al fine di mantenere la stabilità di funzionamento; il resto della compensazione è fornito dal doppio condensatore da 68pF presente nel VAS.

Vediamo ora il funzionamento dello stadio finale: la parte che lavora alla tensione più bassa è un normale emitter follower, con gli MJE15034/MJE15035 come driver e i recenti NJW1302/NJW3281, praticamente una versione riveduta degli MJL1302/MJL3281 nel contenitore TO218 invece che nel TO264, ma praticamente è possibile usare qualsiasi modello disponibile in tale contenitore. Nel PCB che sto preparando ho previsto finali in contenitore TO218 (come gli NJW e simili) oppure TO247 che ha praticamente la stessa dimensione; tra i transistor in TO247 ci sono gli MJW1302/MJW3281.

La parte che lavora alla tensione superiore è fatta allo stesso modo, ma configurata per ricevere il necessario swing di tensione al fine di attivarsi; a differenza del precedente articolo, dove in sostanza la polarizzazione dello stadio a tensione più elevata avviene tramite degli Zener nella catena di bias del finale (tra i due transitor del VAS), nello schema descritto qui ho adottato la cosiddetta tecnica di “bootstrapping”.

In sostanza l’uscita dell’ampli è collegata alla tensione più alta tramite uno zener polarizzato da una resistenza; il segnale presente tra la resistenza e lo zener vine inviato, tramite un diodo, al driver dello stadio ad tensione più elevata, facendolo entrare in conduzione qualche V prima che l’uscita raggiunga la tensione di alimentazione più bassa. A questo punto il diodo in serie alla tensione più bassa viene “spento” e sul carico fluisce solo la tensione più alta. Questo stadio è racchiuso nel riquadro “POS STEP” (“NEG STEP” per il ramo negativo), unitamente ad un filtro composto dalla resistenza da 8.2K e dai due condensatori da 150pF, che rendono ancora più morbido lo switch tra le due tensioni alle frequenze più alte; in realtà questo filtro è citato anche nel Patent N. 5387876.

Il meccanismo di bootstrapping rispetto a quello visto nell’altro articolo permette di avere a disposizione una maggiore tensione in uscita (e quindi maggiore potenza) in quanto non si perdono i Volts di caduta sugli zener nel VAS + circuito di polarizzazione dei finali.

Questa è la sinusoide simulata a 20Khz su un carico di 4Ohm in prossimità della massima potenza d’uscita

image

Come si può vedere la sinusoide non presenta “glithces”; sulla seconda semionda è presente un leggero rigonfiamento che causa una sorta di anticipo nel cambio di tensione, rendendolo ancora più morbido. Sulla prima semionda tale rigonfiamento non è presente, ma sono sicuro che si tratta di un limite del software di simulazione. Scendendo con la frequenza il rigonfiamento si riduce progressivamente fino a sparire del tutto a quelle frequenze (<10Khz) dove lo switch del diodo presente sulla tensione più bassa non è più percepibile sulla forma d’onda anche senza l’uso del filtro citato sopra

Nel riquadro si nota come la tensione di alimentazione sia poco più di 2V al di sopra di quella di uscita. Volendo migliorare ulteriorimente il comportamento durante il cambio di tensione i potrebbe adottare uno zener di valore nominare più alto, perdendo un po’ in termini di efficienza; nel mio schema ho usato un 1N5919B da 5,6V 3W, per il quale aumentando la polarizzazione si può ottenere un’ulteriore innalzamento della tensione al di sopra di quella di uscita.

Nei due grafici seguenti vediamo il confronto in termini di efficienza e potenza dissipata del finale in oggetto confrontato con un finale in classe B, ottenuto praticamente dal primo togliendo l’alimentazione più bassa, connettendo gli otto transistor finali (4 per ramo) in modo classico, e regolando il bias totale per farlo coincidere con quello del finale in classe G, dove in assenza di segnale lavorano praticamente solo 4 transistor invece che 8. I grafici sono stati simulati con segnale sinusoidale ad 1KHz su carico di 8Ohm.

Potenza dissipata

image

Efficienza

image

Una notevole differenza, soprattutto nella zona che corrisponde all’utilizzo medio.

Vediamo ora le differenze con un programma musicale: qui ci viene in aiuto LTSpice che permette di specificare in input un file .WAV. Per questo test ho usato 16s di ritornello di Poker Face di Lady Gaga

Classe G

pout: AVG((v(out))*i(rout))=21.3676 FROM 0 TO 16
pdiss: AVG(((v(vpos)-v(vtrout))*ic(q24)*4)+((v(vl+)-v(vtrin))*ic(q19)*4))=18.5003 FROM 0 TO 16

Classe B

pout: AVG((v(out))*i(rout))=21.3662 FROM 0 TO 16
pdiss: AVG((v(vpos)-v(vtrin))*ic(q24)*8)=36.2656 FROM 0 TO 16

Abbiamo quindi una dissipazione ridotta a metà a parità di potenza erogata; se prendiamo poi un brano con una dinamica maggiore il divario è ancora più evidente.

Un modulo stereo che utilizza questo circuito può essere tranquillamente inserito in un contenitore di questo tipo http://www.modushop.biz/ecommerce/cat066.php?n=1 utilizzando un dissipatore lungo 300mm, alto 40mm (la massima altezza interna disponibile) e con le alette profonde 30mm.

Il problema principale rimane il trasformatore, che dovendo avere comunque una potenza adeguata per gestire al meglio i moduli più bassi, risulta di difficile costruzione; io mi ero fatto costruire da Canterbury Windings due trasformatori da 160VA l’uno con anello amagnetico esterno e schermo elettrostatico tra primario e secondari, per un’altezza totale di 38mm. il trasformatore è stato poi inserito tra i prodotti disponibili con questa sigla

Type: TM155A

Continuous power rating: 160VA
Primary: 230V @ 50Hz
Electrostatic screen
Secondaries: 4 x 16.5V @ 2.42A rms
GOSS band
Dimensions: approx 136x38mm
Mounting: M8 x 30mm bush in a potted centre
Extended lead time on this item

 

Terry all’epoca mi aveva detto che rinunciando allo schermo elettrostatico si possono ottenere un po’ di VA in più.

Nel frattempo sto completanto anche il PCB per un modulo stereo completo di alimentatore

e affidiamoci ai dati forniti dai costruttori

In questo articolo mostrerò come i sistemi tradizionali di misura dei parametri degli altoparlanti, basati su segnali MLS, praticamente non siano più attendibili, surclassati da tecnologie (in particolare una) di misura più moderne, che rendono praticamente obsoleti sistemi di misura come CLIO, MLLSA, il buon Speaker Workshop (che ho usato per diversi anni) e software simili, freeware o con costi di poche centinaia di €, ancora alla portata dell’autocostruttore più incallito.

Recentemente ho acquistato un CIARE PW330, probabilmente uno dei migliori medio-basso disponibile sul mercato, e successivamente un RCF L15P200AK-II, componente storico della casa di Reggio Emilia, che da circa un anno è uscito in versione II, con caratteristiche ancora più “cattive” del modello precedente, ossia maggiore velocità e smorzamento, ma con le stesse capacità di discesa un frequenza.

Ho quindi fatto un bel rodaggio energico ai due componenti, per circa 24 ore, sfruttando diversi segnali sinusoidali, anche più frequenze contemporaneamente, per fare in modo di assestare i parametri; per la cronaca con l’ L15P200AKII a 30Hz ho visto accendersi la spia del clipping del mio EPQ2000 senza che il woofer raggiungesse la massima escursione di 9,8mm, misurata con un riferimento sul bordo del cestello: stiamo parlando di circa 380W su 8 Ohm 🙂 come spiego in questo blog. Anche il PW330 si è difeso molto bene a 30Hz, accettando diverse decine di watt, e comunque prima di misurarlo ha subito diverse serate di musica “live” alimentato da un EPX4000 quasi sempre al limite del clipping.

Dopo avere dato modo ai due componenti di ritornare alla temperatura ambiente ho rilevato, come al solito, i parametri con Speaker Workshop, e qui sono rimasto sorpeso dai dai valori registrati, tanto che ho ripetuto la calibrazione del sistema di misura per un paio di volte.

Mi sono ritrovato con i parametri dei due altoparlanti totalmente diversi da  quelli di targa, che non rientrano nemmeno nelle tolleranze previste, di solito 5%/10%.

Questi i dati rilevati sul PW330

image

contro quelli dichiarati

image

Per quanto rigarda l’ L15P200AK-II abbiamo

image

Contro le specifiche

image

La prime due cose che ho pensato sono state:

  • mi hanno venduto 4 alltoparlanti smi… ma comunque provengono da due venditori diversi, di cui quello dell’ RCF è un noto service, e quello del CIARE un venditore Ebay di affidabilità top
  • Speaker Workshop si è corrotto in modo irrecuperabile

A questo punto per fugare eventuali dubbi mi sono messo a misurare altri componenti in mio possesso, che sono stati rimpiazzati dal PW330 e dall’ L15P200AK-II: un vecchio PW322 ed un HW380, e … sorpresa i dati sono molto simili al dichiarato.

PW322 rilevato

image

Dati dichiarati

image

HW380 rilevato

image

Dati dichiarati

image

Come si può vedere i dati rilevati di questi due componenti sono praticamente coincidenti con quelli dichiarati e ampiamente entro le normali tolleranze di produzione; per completezza ho misurato anche un vecchio HW320 (quando si chiamava ancora M320-38 …) ed anche in questo caso i dati sono molto simili alle specifiche.

Cos’è successo quindi da qualche anno a questa parte, tale per cui con i sistemi di misura come Speaker Workshop e tutti quelli basati su segnale/impulso MLS i dati rilevati risultano totalmente sballati rispetto a quelli dichiarati?

E’ successo che i sistemi basati sulle rilevazioni MLS danno come presupposto che l’altoparlante sia lineare quando in realtà non è cosi, gli altoparlanti non sono lineari, chi più chi meno; inoltre il segnale inviato ha una tensione ed una corrente molto bassa, che non sono in grado di fornire al componente le stesse sollecitazioni di quando vine pilotato in condizioni normali, anche con pochi Watt.

Da qualche anno praticamente quasi tutti i costruttori  sfruttano un nuovo sistema di misura, Klippel, molto più sofisticato di quelli usati fino ad ora; Klippel parte dal presupposto che l’altoparlante non sia lineare ed il modello matematico che usa per determinare i parametri è pertanto non lineare; inoltre i parametri vengono rilevati in regime dinamico, con tensioni e correnti più ampie di quelle comunemente usate dai sistemi basati su segnali MLS.

Ho cercato quindi una conferma indiretta dei parametri del PW330 misurando con Speaker Workshop la risposta in campo vicino, costruita con la somma della risposta dell’altoparlante rilevata a ridosso del parapolvere e quella del condotto reflex opportunamente “scalata” con la superificie del condotto, confrontandola poi con la simulazione di Speaker Workshop; si tenga presente che la risposta in campo vicino è valida fino alle frequenza oltre la quale l’altoparlante smette di funzionare a “pistone” (formula: F=10950/D dove D è il diametro effettivo dell’altoparlante in cm); nel caso del PW330 tale frequenza è pari a circa 410Hz.

Risposta rilevata con Speaker Workshop

image

dalla quale risultano i –3dB a 75Hz

Simulazione di Speaker Workshop

image

dalla quale risutano i – 3dB a 74Hz; direi una buona corrispondenza, che non sarebbe stata tale se avessi inserito i parametri T/S rilevati con lo stesso Speaker Workshop

Per contro considerando l’ HW380 (usando anche i dati di targa) che lavorava in 120l accordato a 43Hz con Speaker Workshop ho rilevato questa risposta in frequenza (valida fino a 330Hz circa)

image

Con un evidente rigonfiamento di alcuni dB intorno ai 50Hz, mentre Speaker Workshop fornisce una risposta molto più lineare.

A questo punto penso sia opportuno attenersi ai dati dichiarati dal construttore, almeno per quelli che usano Klippel e che sono elencati qui, poi fare un bel rodaggio sostenuto compatibilmente con le dimensioni dell’altoparlante, e se possibile eseguire comunque una misura dei parametri con Speaker Workshop (o altri strumenti simili), almeno per assicurarsi che i componenti siano identici o comunque molto simili, che in sostanza è un po’ una verifica di eventuali irregolarità costruttive, che magari ad orecchio non sono percepibili.

Le casse del mio amico Giovanni

Pubblicato: 21 gennaio 2009 in Autocostruzione

 

Un po’ di tempo fa Giovanni, un mio collega, ha deciso di realizzare un impianto Home Theatre ed in quel momento sono iniziate le discussioni sui vari modelli di ricevitori/amplificatori, le caratteristiche e le funzionalità disponibili, le certificazioni supportate (THX, THX ULTRA ecc.) e le modalità di gestione dei segnali HDMI: essendo io ancora totalmente ignorante in materia ne ho approfittato per apprendere un po’ di concetti su questa tecnologia (il mio 32" è ancora uno di quelli che pesa 40 e passa chili 🙂 )

Alla fine la scelta di Giovanni è caduta sull’ Onkyo TX-SR706

Siamo passati poi ad esaminare i diffusori di diverse case, italiane e non come Chario, B&W, Kef, Focal-JM Lab e ridendo e scherzando ho detto "ma perchè non ce le costruiamo noi?". a Giovanni l’idea è piaciuta e dopo un po’ di tempo (per colpa mia i tempi di "produzione" sono stati un bel po’ lunghi) ne è uscito quello che si vede nelle foto riportate di seguito.

Durante le misure della risposta in frequenza in casa mia

 

in questa foto sono in fianco alle mie durante i primi test di ascolto

E qui sono a casa di Giovanni dopo che finalmente sono riuscito a finire anche le griglie di protezione

 CIMG6164

CIMG6165

Come si può vedere dalle due foto riportate sopra, le casse sono state costruite per avere le stessa altezza della televisione: il vincolo del posizionamento ha portato al montaggio laterale del Woofer da 20cm (soluzione adottata da diversi costruttori) ed ha permesso di mantenere il pannello frontale molto stretto, con il vantaggio di avere una minore quantità di diffrazioni generate dall’interazione degli altoparlanti con il pannello stesso: è largo 16cm, praticamente il minimo che si potesse ottenere considerando gli arrotondamenti degli spigoli della cassa stessa e della griglia di copertura. il MidWoofer ed il Tweeter sono montati inveriti in questo caso per mantenere il Tweeter il più allineato possibile con il punto di ascolto

I componenti utilizzati sono dell’italiana CIARE ed in particolare:

  • MS200, SubWoofer a doppia bobina delle linea Audio Video, utilizzato con le bobine mobili in parallelo per un carico nominale di 4Ohm
  • MW130, Woofer della linea Audio Video con impedenza 8Ohm
  • MT263, Tweeter della linea Audio Video con impedenza 8Ohm

Anche il crossover è stato realizzato con componenti dello stesso produttore

Il Woofer lavora in un volume netto di circa 18,5l le cui pareti interne sono ricoperte da fonoassorbente acrilico da 3cm ed è accordato  a circa 35Hz da due tubi da 3,5cm di diametro. Sia la risposta simulata con SpeakerWorkshop che quella poi rilevata in ambiente con lo stesso software evidenziano una leggera enfasi intorno ai 75Hz: è una conseguenza del fatto di avere “rinchiuso” il SubWoofer in un volume un po’ più piccolo rispetto all’accordo ottimale, ma che per questo garantisce uno smorzamento migliore dell’altoparlante

Il MidWoofer lavora in un volume chiuso di circa 4,5l quasi totalmente riempito con lo stesso acrilico visto prima, con una risonanza a circa 115Hz ed un andamento della risposta molto smorzato.

Di seguito la risposta in frequenza rilevata in ambiante (la mia sala, posizionate come nella terza foto): la misura è “scalata” ad 1/10 d’ottava contro 1/3 d’ottava utilizzato da praticamente tutte le riviste.

 Risp

L’impedenza raggiunge un minimo di 3,7Ohm a circa 30Hz con uno sfasamento inesistente, è quindi un carico facile anche in virtù della scarsa energia dei programmi musicali a quelle frequenza, per poi assumere l’andamento tipico di un diffusore da 8Ohm a partire da circa 70Hz .

L’incrocio elettrico tra il MidWoofer ed il Tweeter avviene a circa 3,5KHz ed è abbastanza “aperto” come si vede dall’aumento dell’impedenza in quella zona: quello acustico è spostato leggermente più in alto ed i due altoparlanti si incrociano ad un livello di circa -6dB rispetto alla risposta totale, mantenendo cosi un andamento energetico in quella zona praticemente uguale a 0 (Rif. LE RETI DI CROSSOVER – PARTE TERZA di Renato Giussani)

 Imp

Ho scelto un incrocio abbastanza alto tra MidWoofer e Tweeter in modo da lasciare riprodurre al 13cm praticamente tutto lo spettro delle voci femminili: anche se è un po’ in controtendenza rispetto alla stragrande maggioranza dei produttori, che ormai incrociano anche a 1,5Khz e meno, in ambito Hi-Fi non mi piace “spezzare” la voce tra due altoparlanti, pur buoni che siano e per quanto possano essere vicini i centri di emissione.